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1. INTRODUCTION 

APPLICATION transport pro- 
cesses offers several advantages. Among them are the 
surface area generation 

transport rates through the 
electric field-induced 

experiment 
of Kronig and Ahsmann [4] nearly 40 years ago, 
very little is understood 

siderable renewed interest by a desire to 
develop compact direct-contact 

technical difficulties mechanical 
agitations 

processes. As a result, a number of studies 
have been in the past few years in an effort 
to understand phenomena. For a complete update 
of the activities 

electrical stress is the sole electrohydro- 
coupling. To date none of the theoretical 

investigations 

Griffiths and Morrison [7, 81 and Sharpe 
and Morrison [9] treated the as an external 
problem with controlling resistance being in the con- 
tinuous phase. This is equivalent 

fictitious mixing to destroy 
the temperature gradient within the drop On 
the opposite extreme, Chung and Oliver [lo] studied 
the aspects of the internal problem in which 
the host phase is completely 

According to Abramzon and Borde [ 111, 
the criteria for those limitations may be determined 

resistance which may roughly be calculated 

magnitude of phase resistances : 

where @, is the thermal conductivity 
dispersed phase, and Nu,, is the steady state 

Nusselt number. For liquids of similar properties, this 
ratio is of the order of unity therefore 

approaches above is 
Under this we the ‘con- 
jugated’ problem in that the of 
heat transfer for both the continuous dispersed 
phases have to be solved simultaneously. 

attempted to solve this 
problem in an approximate manner by using the thin 
boundary layer approximations 

diffusion in the 0 direction. 
justified only during a short period of and 
is invalid as time due to the growth of the 
boundary layer with time. 

In this paper we concentrate our efforts to pose 
the problem of heat transfer associated 

realistic term, 



444 I-l. D. NGUYEN and J. N. CHUK 

NOMENCLATURE 

A constant coefficients in the velocity W dimensionless field strength 
equation (4) Z dimensionless temperature. 

A” see equation (41) 

& constant in equation (I 3) 

C,, constants. see equations (29) 

Ti 

electric field strength 
unknown function defined by equation 

(19) 
gk see equation (8a) 

Gk see equation (8b) 
K n+ i/2 spherical Bessel function 
A54 steady state Nusselt number 
P Legendre polynomial 
Pe Peclet number 

;,, 
heat transfer rate 
heat flux 

R drop radius 

Ii, see equation (27) 
r dimensionless radial coordinate 

‘6? see definition (44) 
RHS right-hand side, equation (20) 
8 residual 
T dimensional temperature 

t, characteristic time 
U velocity vector 

w{ 

symbols 
thermal diffusivity 
see Appendix B 
Euler-Mascheroni constant 
perturbation parameter 
angular coordinate 
thermal conductivity 
cos 6 
density 
dimensionIess time 
ratio of property x of the continuous to 
dispersed phase 
see Appendix A. 

Subscripts 
S surface condition 
ss steady state condition. 

Superscripts 
in inner solution 
out outer solution. 

Overheads 
dispersed phase. 

then develop a singular perturbation procedure for 
the conjugate problem. In addition to the conjugative 
aspects of the problem, it differs from the work of 
Griffiths and Morrison 171 in that the present for- 
mulation also includes the translational velocity of the 
drop for which the regular perturbation expansion 
faiIs to yield a uniform solution. Furthermore it also 
takes into account the peripheral variations of the 
interfacial temperature. 

2. FORMULATION 

Consider a pure liquid drop at temperature TO, 
translating with a terminal velocity U;, in another 
immiscible liquid of infinite extent, held at tem- 
perature T,, under the inlluence of a uniform electric 
field whose strength E is assumed not very strong in 
order to prevent a charge leakage from the two-phase 
system. Due to the temperature difference, heat will 
flow from/to the drop depending on the direction of 
temperature gradient as dictated by the second law of 
the~odynamics. This heat transfer process can be 
described by the energy equation written in dimen- 
sionless form as 

PeU*VZ = V2Z (2) 

a2 
z +PeO-VZ = V’Z (3) 

where Pe (= U,R/a) is the Peclet number for the 

continuous phase with c1 being the thermal diffusivity, 
pe ( = V, R/i) the Peclet number for the drop phase, 
z( = tq’R ‘) the ~mensio~ess time, U = (U,, U,) is 
the velocity vector, and Z is the local dimensionless 
temperature defined by (T- T,)/(T,,- 7’,). In the 
above equations, the transport within the dispersed 
phase, distinguished from the continuous phase by a 
‘hat’, is treated as transient because the steady state 
cannot be attained unless the drop is in thermal equi- 
librium with its surroundings. The electrohydro- 
dynamic problem in the creeping regime has been 
solved by superposing Taylor and Hadamard- 
Rybczynski flows [ 121, and the results are quoted for 
completeness : 

U*(r,@) = 
( 
7 + F + 1 

> 
case 

+Aj f-f (3cos*@-1) 
( > 

(4a) 

U*(r,@) = (4; - $ -l)sin@- FsinOcosi3 

(44 

0r(r,8) = A,(2-2r2)cosB-A3(r-r3)(3cos2e-1) 

(4c> 

O&,B) = ~~(4rz-2)sinB-~~(Sr3-3~)sin~cos~ 

(4d) 
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where the constant coefficient A values are defined by 
the following expressions : A, = l/4( 1 +(Ij,,), A, = 
-(3+2r(p,)/4(1+@,), A3 = W/4(1+0,), and A4 5 
-QJ4(1 +@J. Also, r is the dimensionless radial 
coordinate, B is the angular coordinate, W = 
4V&l +@,,)/U, is the measure of the relative 
importance of the electric field to drop translation and 
may be interpreted as the dimensionless field strength. 
V,, introduced in the definition of W is the m~imum 
velocity generated by the electric field in the absence 
of the translational motion, and has a complicated 
functional dependency upon the electrical properties 

Il2]. 
In order to make the problem well-posed, we specify 

the following boundary conditions that include the 
appropriate limit far away from the drop surface, 
the continuity of temperature and heat flux at the 
interface. i.e. 

^ 

O,$lA = $l,P) @a) 

zu,ii> = -m,P) = Z(Llii) (5b) 

where 2, is the interfacial temperature with angular 
dependence. Here it is modeled by two terms : the first 
term is for spherically symmetric conduction whereas 
the second is added to account for the effects of con- 
vective motions due to both the translation and the 
electric field 

Z,(P) = Z,,+E[Zo,Po(P)+Z,,P,(~)+ZZIP2(P)] 
(6) 

in which jl represents cos8, E is the Peclet number 
for the continuous phase and is used as a perturbed 
parameter, and Pi is the Legendre polynomial of order 
i. Other constraints that assure the symmetry of the 
problem about the x-axis will be imposed in the next 
section. 

3. METHOD OF SOLUTION 

Due to the presence of the translational motion of 
the drop, regular perturbation [7] is of limited use 
because the solution does not approach the common 
limit far away from the surface. Physicahy this means 
that there exists a region where the conduction is no 
longer dominant as illustrated from the ratio of the 
convection to conduction flux 

u-vz 
Pe- 

v2z 
= O(r Pe) (7) 

which clearly shows that conduction is the major 
mode of heat transfer near the drop surface whereas 
convection dominates far from the drop regardless 
of how small Pe may be. 

To overcome the deficiency of the traditional per- 
turbation series, it is necessary to employ a singular 
perturbation method in that the inner and outer solu- 

tions are expanded in the following forms : 

Zi”(r,$ = f gk(.5)ZF(r,j) 
k=O 

z”*‘(p, ,E) = F G,(&Z"'(P> P) 
k=O 

@W 

where p is regarded as the resealing coordinate 
(p = Er, E = Pe), and the functions g&(s) and Gk(t) 
are subjected to the restrictions 

limgk+ = 0 and Iii?G$$ = 0. 
r-0 gk (9) 

To complete the solution we must match the inner 
solution at its ‘farthest extremity’ with the outer solu- 
tion at its ‘nearest extremity’ asymptotically. 

3.1. Lending order solution 
We now proceed to construct the solutions by sub- 

stituting equation (7) into equation (2) with the 
assumption that go(e) = 1. The leading order equa- 
tions are obtained, by equating the coefficients of so, 
as 

(10) 

and the integration of equation (10) leads to a solution 
that satisfies the appropriate boundary condition at 
the interface as 

Z;(r) =Zoo+C, 1-i 
( 1 

where C, is the constant of integration to be deter- 
mined shortly. 

For the outer region, the repetition of the above 
steps gives the leading order governing equation in 
terms of the restrained coordinate by 

- I (1-P) .y (*2) 
t3ZTU' 

=P ap ~-- P ap 
In a different context, Acrivos and Taylor [14] 
obtained an analytical solution to equations (12) in 
the form of a series of product of spherical Bessel and 
Legendre functions 

(13) 

where B,, are constants, and the spherical Bessel func- 
tion is defined as 
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The constants in equations (11) and (13) are now 
calculated from the matching principle that demands 
the two solutions to approach the common limit in the 
overlapping region. Mathematically, this requirement 
may be stated as 

!\m Z:(r,/I) = ~_~,G,(E)Z~‘(~&. (15) 

For expression (15) to be met. the complete Ieading 
order solutions with G,(e) = E reduce to 

(16) 

3.2. Higher order approximations 
For higher order solutions, the algebra in the 

matching process becomes tedious, without even men- 
tioning the complexities introduced by the gove~ing 
equations. However, the next higher order solutions 
may be obtained with a reasonable amount of effort. 
Due to the lengthy algebraic involvement and the 
straightforwardness of the procedure, we only briefly 
outline the steps. 

The nth order equation can be written in the 
following form : 

= u az;_, u (1 -#i2)“” az:_, 
‘ar ’ r 

- (18) aji . 

Upon inspection of equations (4a, b), (6), and (18), it 
would appear that a portion of equation (18) may be 
simplified.if the solutions are sought in the form of 
a linear combination of the products of unknown 
functions of I and the first 2n Legendre polynomials, 
i.e. 

-C(r,li) = 2 f;,(r>P,(1T) 
,=O 

(19) 

where the subscripts j and n indicate the series index 
and order of approximation respectively. 

The advantage of expressing the solutions as equa- 
tion (19) comes to light from the fact that it allows one 
to solve equation (18) termwise. More importantly, it 
transforms the partial differential equation into ordin- 
ary differential equations which are certainly much 
easier to deal with since their solution techniques are 
well developed. For n = 1, the right-hand side of 
equation (18) can be evaluated from the leading order 
solution (16) and the velocity of the continuous phase 
(4a, b), then using the fact that a polynomial of power 
i can be fitted exactly by the first i+ 1 Legendre func- 
tions, one can equate terms containing like order 
Legendre polynomials so that RHS’; may be written 
as 

RHS’” = i -Z ()* 
i 

P,(b) 

1 1 
+-2&Z,, 16 -I” p2w. (20) 

i ) 
Combining equations (18)-(20) yields the Euler equa- 
tions whose solutions are readily solved using the 
method of undete~ined coefficients 

fit(r) =$-Zoo [~(~-~) 

+A,(; - ;)+ ;(:\ -I)] (21b) 

(z&t;) (21c) 

with the help of the matching condition 

j& [Zo”(r,p)-l-~Z’;(r,ji)] = jf_m,[G,(~)Z~‘(p,P)]. 

(22) 

We now turn our attention to the next term of the 
outer solution described by 

- ;A2200 
e-P/2(’ -P) 

i [ 7 - 2pom 

1~ (231 

may then be rearranged 

Zyt(r, &) = - ($A:A,Z,,) e”2pPZ*(r, 8). (2% 

the equation solu- 
tion consists parts : the homogeneous solution 
and the particular solution. The homogeneous solu- 

linear 
combination first Legendre functions. The 

solution 
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+ j$o &(P)pi(l) 
1 

(26) 

where the functions R,(p), j = 0, 1,2 are 

f02(r) =&(l-i)++(r-t)+lnr(op-$) 

+$($-~)+~(~-~)+~(~--~) (31a) 

R,(p) = F s O” eCx 
xdx+ 

e- l/Q 

-1np 
P 2P (27a) fi2(r) = E 

(27b) 

The constants C, can be evaluated from the matching 
requirement as usual : 

!il [Zo”(r, p)+EZln(r, /?)I 

= ,$I0 [Ezy( p. /i) + 2zyy p, ii)] (28) 

+;(&$)+~(~-~) (3lb) 

f2*(r) = E2(r2-+~(r-;)-~(l-~) 

_~(;-;)_~(;_$ 

-!$$)+$(;-;)+$_;) 

so that 

(3lc) 

co = 
-3 z,, 1 

4KA z+2 +& ( ) 

(29a) f32(r) = E3 
2 00 

C 
1 

= 3(1-Y) 
4n 

c2 = (y-3) 
4n 

Pb) 

(29~) 

where y is the Euler-Mascheroni constant with a value 
of 0.577215. 

Since the values of the Legendre functions are 
identically zero except for the zero order when they 
are integrated over the drop surface, the electric field 
becomes obscure unless the analysis, at least the inner 
solution, is carried out one order further. To do that, 
we need to solve equation (18) by letting n = 2, and 
rearrange the RHS in terms of Legendre polynomials 
by using their orthogonality properties. With the 
algebra omitted, the results of the RHS and the solu- 
tions are given below : 

+p2(P)n$o$ +p3(d) ; 0.’ 

n=Or 

+&(P) 2 0.” (30) 
n=Or 

-~(p&Ei(pp~~) 

+$;-$)+$(;-$) (31d) 

+ 2 (; - $) (3le) 

where the w{ values are known functions of the trans- 
port and electrical properties listed in Appendix A, 
and En are constants of integration remaining to be 
determined. As pointed out by Acrivos and Taylor 
[14], the second order inner solution contains a term 
that cannot be matched with the outer solution. 
Consequently, the inner solution should have a term 
E’ In&Z’?* where Zy* is the solution of equation (10) 
with the interfacial constraint Zoo replaced by zero. 
That is 
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Z’;.*(r,/q = 02; 1 - 1 
( > r (32) 

With the matching condition 

lim [Z,“+eZi; +.s2 I~EZ~~‘+E~Z;“] 
I-CC 

= ;mO [&Z~‘+E?Zq”‘] (33) 

the constant E, values can be evaluated to be 

E, = - $i2zoo (~-~)-~~+Zo,) (34a) 

E, = - :zoo Wb) 
E2 = E, = E4 = 0. (34c) 

Further examination of equation (33) reveals that 
the next term of the outer expansion would be 
.s3 in EZ~’ where Zo;l’ can be shown to satisfy the 
equation identical to (12) and the matching require- 
ment valued at (-0:/p) as p -+ 0. It thus follows that 

As a consequence of the presence of equation (35) 
in the outer expansion, the next term of the inner 
solution must be - 2/3(A *a3 In EZ’~). From the argu- 
ments above, it is therefore concluded that the first 
few terms of the inner series expansion are expressed 
as 

Z’“(r,/i) = Zt(r,ji)+ 
( 

e-~A,c31ne 
> 

Z’;(r,j) 

wy+&2Zt(r,p)+... (36) 

and the accuracy of the resulting expression may be 
demonstrated to be O(e3), 0[c4(lnc)2], and O(L’lna) 
respectively. 

3.3. Droplet heating/cooling 
Unlike the exterior problem, the classical per- 

turbation yields uniform solution throughout the 
drop domain. It is therefore suitable to expand the 
drop temperature in a perturbation series as 

(37) 

so that the lowest order of approximation to the 
governing equation can be obtained by neglecting the 
convective terms in equation (3). In view of the bound- 
ary condition associated with it, we conclude that this 
order is not dependent upon the polar coordinate. 
That is 

ai, 1 a a.2 -_=-_ r2_2 
aT r2 ar ( > ar (38) 

which is the pure conduction for a spherical body. It 
is subjected to the initial temperature along with the 

continuity of temperature, and of heat flux at the 
interface as described by equations (5). In addition to 
those requirements, we impose the condition of zero 
heat flux at the drop center. 

It is possible to solve equation (38) by the sep- 
aration of variables technique together with the help 
of Duhamel’s theorem to account for the time-depen- 
dent boundary condition. However, such an approach 
would lead to an integral equation of Voltera type 
characterizing the time evolution of surface tem- 
perature. An alternative approximation is the Method 
of Weighted Residuals (MWR) that may yield an 
approximation which often contains the main features 
of the result with only a few terms. In this method, the 
dependent quantity is expanded in a series of known 
functions L#‘,: (r) as 

Z,(z,r) = Z,,(z)+ C A(7).%(r) (39) 
i-0 

where A, are unknown coefficients to be determined 
in a manner that the differential equation is satisfied 
in some best sense. Next we substitute the expansion 
(39) into the residual, 4, defined as 

^ 
&!?!$k?& r2!g_ 

( ") 
(40) 

It is clear that the further Z. departs from the exact 
solution, the larger is the residual &. To control the 
growth of the residual, we choose the Galerkin 
method, which makes the residual orthogonal to the 
weighting function, thus making the residual 
approach zero as No -+ co. This key feature relies upon 
a theorem which states that if a function is orthogonal 
to each member of a complete set of functions then 
that function can only be zero. By utilizing this 
theorem, the following algebraic/differential system 
can be derived for the determination of & : 

dZ,, 4da, 4 da, 4 da, 

7+5dz-+35dz+iiEds 

= -6a,+22, + iA2 (41a) 

dZoo 4da, 4 dA^, 20 da, 

dr+?X+udz+231dz 

= -6a,- ;A^, - ;A2 (41b) 

dZ,, 4dA^, 20 da, 140 da, 

dz-+fK++99++1287dz 

= -6a,- g’/i, - ;A2 (41~) 

z,, = &4,+a, +Az) 
I( 

(414 

where we have approximated the solution by a poly- 
nomial, rearranged in the form (1 -r2)rZk so that some 
of the boundary conditions are satisfied automatically 
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for the trial functions &(r) because of their simplicity. 
The fourth equation, obtained directly from the inter- 
facial energy balance, relates the leading order surface 
temperature to the coefficients &. 

The initial conditions may be obtained by weighting 
the initial residual with the trial functions in con- 
junction with the requirement regarding the con- 
tinuity of heat flux at the interface. Thus 

A,(O) = 
69QK 

32(27+2&j 

A,(O) = 
-334?, 

16(27+2@,)’ 

B,(O) = 
429dD, 

32(27 + 20,) ’ 
(41~g) 

By eliminating the variables, one can convert the 
system (41) to a single third order homogeneous ODE 
with constant coefficients, for which a standard treat- 
ment is readily available. That is, the solution is a 
linear combination of three exponential terms 

A(7) = P,,ooe-Qorf82,c0e-“I’ +&,00e-a2r (4W 

Jz(7) = Pa,ooe-U~‘+Bs,ooe-“~‘+~6,00e-n~~ VW 

A,(7) = 87,00e-u~*++88,(10e-n~r+~9,00e-0~r (42~) 

where ak are the roots of the associated characteristic 
equation 

(4@, + 54)x3 + (5580, +3267)x2 

+(188lOiD,+4SO45)~+135 135 = 0, (42d) 

and the integrating constants are evaluated from 
expressions (4le-g) along with the remaining initial 
conditions derived from equations (41). These are 

dJ+l_j 
2 -3003 &A, 

m r=O = 3024+22#, (64+11*X+- 

(42e) r=O 

Wf) 

where the superscripts represent the order of differ- 
entiation. The above six equations, three for each 
value of i (i = 0, 1) plus those stated earlier, consti- 
tute a system of nine equations in nine unknown /I 
values. 

At higher orders, the equation reduces to the stan- 
dard form of axisymmetric heat conduction problem 

in spherical coordinates with the convective term, 
known from the preceding approximation, considered 
as a heat source. In general the equation for any order 
may recursively be given by 

ai-, 
; or* - .- L _ o cji*)l’* a&, 1 0 -------. 

r aii (43) 
0. 

Due to the non-angular de~ndency of the lowest 
order solution, the first order approximation, IP = I, is 
governed by equation (43) with the angular convective 
term identically equal to zero. Perhaps the best 
approach of solution would be to express the radial 
convective contribution, denoted bye,, in terms 
of Legendre functions as follows 

%z&=o (44a) 

-(Or3 -3r5)&OO] emuor 

+ IrBt,Oo - (r-2r3)85,00- (2r3 - 3r’)Bs,ool e-‘~’ 

+W3,00 - (r-WB6,00-P3 - 3r5)89,001 e-“zr} 
WV 

- (2r4 -3r6)p7,00] emaor 

+ k’B 2.00 - (r2 - 2r4)B 530 - W4 - W88,001 e-“lr 

+ [r2B3,00 - (r2 -2r4)~6~oo - (2r” - 3r”)j3P,oo] e-ozr). 

(f=) 

In order to meet the consistency of the interfacial 
temperature, and to satisfy the finite value require- 
ment at the origin, the solution is sought in the form 

(45) 

so that equation (43) can be solved termwise. The 
advantage of being termwise is the relative ease with 
regard to the solution due to the reduction of the 
number of variables by one. The analysis of the result- 
ing equations is very much the same as that of the 
leading order even with the non-homogeneity intro- 
duced by the heat source term. 

Since the steps leading to the solution were dis- 
cussed earlier, we need not repeat them here. Instead, 
we present the solution and refer the reader elsewhere 
[IS] for details 

NO, 

fo,(7,r) = Z,,(r)f(l-~‘)~~~r~~~(7) (464 



450 H. D. NGUYEN and J. N. CHUNG 

f”,(T,r) = r’Z,,(r)+-(1-r’) C r2k+26k(~) (46~) 
k-0 

in which we have used trial functions that are nearly 

the same as the terms of their correspondingek , 

values. The presence of the extra terms is to satisfy 
part of the problem. Since the function fL, values are 
generally weak [ 151, we retain only the first two terms 
of the series so that the first order interfacial tem- 
perature becomes 

Z,,(7) = ; [&(7)+~B,(7)1- ;&d7) (46d) 
K 

m=& i 26d7) 
h 

+2fi,Czl+ ;~(i&)Z,,W] (46f) 

where the constants L?,, c,, and d, are given in Appen- 
dix B. 

From a study of Nguyen and Chung [16], the tem- 
perature inside a vaporizing drop translating in an 
electric field is almost spherically symmetric, and the 
first order interfacial temperature is, in any cir- 
cumstances, more than one order-of-magnitude 
smaller than the leading order. This indicates that 
higher order analysis is practically unnecessary. 

4. RESULTS AND DISCUSSION 

In this section we intend to carry out a parametric 
study, rather than being referenced to a particular type 
of material, of the solutions obtained in the previous 
section in order to demonstrate the electric field/two- 
phase flow interactions and the consequence of their 
influences upon the heat transfer process. Efforts will 
also be made to demonstrate the usefulness of the 
present treatment over a more direct method that 
usually involves the solution of the so-called Volterra 
integral equation. Based on the authors’ knowledge, 
this work is the first that employs a method of 
weighted residuals to a boundary value problem 
involving time-dependent boundary conditions 
and/or non-homogeneities arising within the govem- 
ing equation itself. 

Perhaps the most important parameters in a con- 
jugate system, such as a two-phase system, are the 
interfacial variables which refer to the surface tem- 
perature in this case. This is true because once it is 
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FIG. 1. Time evolution of surface temperature for W = 5 (a), 
20 (b) and - 20 (c). 

known, their couplings are eliminated, and one is 
allowed to model the transfer processes for each 
region separately. In the study of Nguyen [15] and a 
related one Nguyen and Chung [16], the most domi- 
nant surface temperature is that associated with the 
zero order solution. It is, therefore, necessary to retain 
as many terms as possible in order to assure that the 
solution, though somewhat approximate, preserves 
the main features of the important mechanisms occur- 
ring during the course of exposure. Figures l(a)-(c) 
show the transient response of various components of 
temperature for a system composed of two immiscible 
fluids having similar physical properties at three 
different values of W (5, 20, and -20). For a positive 
W, the electrically generated flow, directed from the 
pole to the equator, causes a convective effect where 
more than 77% of the surface area senses an increase 
in temperature. Although the influence of the electric 
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FIG. 2. The electric field effect on the surface temperature. 

field has very little, if any, impact on the history of 
the surface temperature, its presence is clearly shown 
to delay the establishment of a local thermal equi- 
librium at the interface. As will be discussed shortly, 
the influence of the electric field corresponding to this 
order does not yield any net effect, but it restructures 
the temperature distribution on the drop surface, and 
hence the heat source distributed inside the drop 
domain for the next higher order approximation. For 
a negative IV, the electric field-driven flow reverses its 
direction causing effects that are totally opposite to 
the former situation, but its overall result stays 
unchanged. One should not be misled that the direc- 
tion of the internal circulation is a controlling par- 
ameter; it is instead dictated by the electrical prop- 
erties of the participating medium. One distinctive 
characteristic of the leading and first order solutions 
is the fast response with time for the former, especially 
at short time, whereas the latter tends to establish 
its maximum influence, but can never overcome the 
domination of the conduction. 

Unlike the case of thermal transport at high Peclet 
numbers where the electric field has a decisive role 
even with a relatively low value of W, no pronounced 
consequences are observed in this study for a 
dimensionless field strength as high as 5. This may be 
explained by the fact that conduction is the superior 
mode of heat transport at low Peclet numbers. How- 
ever, as the field is increased in potential, the con- 
tribution from the electrically induced convection 
becomes more competitive over its counterpart, and 
it eventually outplays that due to translation provided 
that the applied voltage is sufficient. This behavior is 
clearly demonstrated in Fig. l(b), where the influence 
of the field becomes noticeable. In carrying out the 
computations, we have used three and two terms for 
the zero and first order approximations respectively. 
Since the MWR method is very similar to the method 
of separation of variables, they both suffer the same 
difficulties in getting the solution to converge at small 
time. Based on this information and the monotonic 
nature of the solution, the maximum error occurs 
at t = 0, which is about 7% lower than the exact 
prescribed initial value. 

In Fig. 2 we illustrate the effects of an electric field 
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FIG. 3. Time variation of the temperature at the center of 
the droplet. 

on the interfacial temperature, Z,,, at various field 
strengths. They all show a general trend with the early 
stage associated with a rapid increase in temperature 
until the electric field effect is fully established when 
it reaches a critical value, then falls off, at a slower 
pace however, as time increases. The time it takes to 
achieve a maximum/minimum value is roughly the 
same for all cases given in the figure, and their 
maximum values exhibit a linear relationship with W. 
It is noted that the initial condition was not satisfied 
exactly by the MWR method, but the error is negli- 
gible, as shown in Fig. 2. 

The fully established thermal equilibrium can be 
characterized by the temperature of the drop center 
because a homogeneous material can be considered 
to be in thermal equilibrium when all the temperature 
gradients have vanished. In Fig. 3 we plot the tem- 
perature at the drop center against time for different 
values of Peclet numbers. In general, the temperature 
at the location falls off in an exponential decay 
manner. Although it behaves as if it is shielded from 
the field, one should be reminded that it does have 
some effects if a higher order approximation is 
included in the analysis. It is important to note that 
the length of the transient period is a weak function 
of the Peclet number, and this fact may be used to 
substantiate our assumption that there is no region 
within the drop where convection and conduction are 
of the same order. On this basis, the application of 
regular perturbation is justified. 

As discussed earlier, once the interfacial tem- 
perature is known the transport processes within their 
own phases may be modeled individually. With the 
help of the inner solution of the continuous phase, the 
local heat flux along the periphery of the drop can 
be calculated by evaluating the normal derivative at 
r = 1. This operation results in 

Q”(z3P) = Zoo+ 
1 ( 

e-- :A,c’lnE)& +zO,) 
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p4m (47) 

where the heat flux has been non-dimensionalized by 
tc(T,-- T,)/R. Also of interest is the total heat trans- 
fer, Q, which can be obtained by integrating the heat 
flux over the entire drop surface. Such integration 
results in no net contributions from terms with Legen- 
dre polyno~als of orders other than zero. That is 

From the properties of Legendre functions, it appears 
that only u$, k = 4-8, depends, among other transport 
properties, on the electric Geld. This indicates that 
only the zero and first order terms carry the con- 
tribution due to the electric field. Therefore, one may 
interpret the first term as the contribution due to 
conduction, the second and third to be the convective 
enhancement due to translational motion of the drop, 
and the fourth term to represent the combined con- 
vection of the former and the electro-convection 
modes. It should be noted that the functional form of 
equation (48) is different from the analysis of Griffiths 
and Morrison [7] where they derived the Nusselt num- 
ber to be a series with terms of even power in Peclet 
number for a stationary drop subjected to an electric 
field. Such information, if known in advance, would 
be very helpful in correlating experimental data. It is 
also worthwhile to point out that the present result 
reduces to the expression given by Acrivos and Taylor 
[ 141 when ZOO = 1 and Z, i = 0 for a slowly translating 
solid sphere in an electric field-free environment 

Qso,id = 2f~:i.s~ y+ $!j +Inc+ iaine 
> 

. (49) 

To assess the advantage of the use of an electric field 
to enhance heat transfer, it is desirable to examine the 
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FIG. 4. The effect of an electric field on the heat transfer rate. 

ratio of the total transport rate to that without an 
electric field. Here we give the results at two different 
Peclet numbers in Fig. 4. It is seen that the curves do 
not collapse into one at small time as boundary layer 
theory had predicted. This result indicates that con- 
vection, especially eI~tro-convection, has a major 
role at the later stage of the process. It also reveals 
that the net effect due to the electric field depends 
strongly on the translation, the magnitude of which 
can be deduced from equation (48) to be c2 W. 

5. CONCLUDING REMARKS 

The results illustrated thus far would fill the lower 
end of the Peclet number spectrum that has not been 
explored in the past. A number of interesting classical 
results can be deduced from this study by setting the 
parameters to their appropriate values. Although the 
electric field does stimulate the transport process to 
some extent, its usage is only effective at high values 
of W. None the less, one should be aware of the nature 
of electrohydrodynamic couplings as it may carry a 
direct application in combustion where a change in 
temperature distribution inside a heterogeneous drop- 
let would enhance the likelihood of a secondary atom- 
ization. There is no doubt that such technology, if 
well developed, may lead to clean and more efficient 
combustion of fuel drops. The solution technique 
proves to be useful for the study of boundary value 
problems with a time varying interfacial condition 
that is one of the main attractions of our study. This 
feature is shown to be important for transient ana- 
lysis, and should therefore be incorporated into the 
model. 
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APPENDIX A 

The following are the expressions for wi associated with 
equation (3 1) in the text : 
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TRANSFERT THERMIQUE CONJUGUE POUR UNE GOUTTE EN TRANSLATION A 
FAIBLE NOMBRE DE PECLET DANS UN CHAMP ELECTRIQUE 

Rbum~n considbre l’echange thermique conjugue avec temperature variable a l’interface entre une 
goutte liquide et le fluide ambiant dans un champ kkctrique unifonne. On dtveloppe une perturbation 
singuliere pour obtenir la temperature dans le domaine de phase continue tandis que la perturbation 
riguliere est utilisee pour obtenir la solution dans la goutte avec le secours de la methode des residus 
ponder&. Cette methode est trouvke puissante pour resoudre les probkmes avec des htttrogeneites dbpend- 
ant du temps a cause de l’equation et ou des conditions aux limites. La temperature est calculee au premier 
ordre du nombre de Peclet ; nianmoins un ordre plus eleve est aussi atteint pour la phase ambiante de 
facon a examiner l’influence d’un champ externe sur les flux totaux transfer&s. Dam la solution de premier 
ordre, les effets dun champ Clectrique alterent la temperature a l’interieur et a l’extbrieur de la gouttelette 
ainsi que le flux thermique, mais le flux net transfer& qui est totalement gouvemt par la conduction et la 
convection demeure inchange. Au dell de l’approximation du premier ordre, la contribution du transfert 

net de chaleur a cause du champ ilectrique devient calculable. 
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KONJUGIERTER WARMEUBERGANG AN EINEM BEI KLEINER PECLET-ZAHL IN 
EINEM ELEKTRISCHEN FELD BEWEGTEN TROPFEN 

Zusammenfassung-Es wird der konjugierte Wlnneaustausch durch die Grenzfllche zwischen einem 
bewegten Fltissigkeitstropfen und dem umgebenden Fluid in einem gleichfiirmigen elektrisichen Feld 
betrachtet, wobei die Grenzfliichentemperatur zeitlich veriinderlich ist. Die Temperatur im Gebiet der 
kontinuierlichen Phase (in der Umgebung des Tropfens) wird mit Hilfe eines singularen Storungsansatzes 
errnittelt, wahrend ein regulares Stbrungsverfahren unter Anwendung der Methode der gewichteten 
Residuen fiir die Liisung des Temperaturfeldes im Tropfen benutzt wird. Dieses Verfahren erweist sich als 
wirksames Instrument bei der Lijsung von Problemen mit zeitabhangigen Nicht-Homogenitaten, die sich 
aus der zu Grunde liegenden Gleichung und/oder den Randbedingungen ergeben. Die Temperatur wird 
bis einschlieglich der Peclet-Zahl erster Ordnung berechnet. Dariiberhinaus werden such hiihere Ordnungen 
fur das umgebende Fluid betrachtet, urn den EinfluB eines augeren Feldes auf den Gesamttransport zu 
untersuchen. Bei der Losung erster Ordnung wirkt sich ein elektrisches Feld so aus, daD sich die Ternperatur 
innerhalb und augerhalb des Tropfens Indert. Dasselbe gilt fur die Wlrmestromdichte, wobei jedoch der 
Nettowannestrom, der sich aufgrund von Leitung und Konvektion ergibt, unverandert bleibt. Bei Liisungen 
hoherer Ordnung wird der Beitrag zum Nettowlrmetransport aufgrund des elektrischen Feldes 

abschltzbar. 

COfIPIIXEHHbIfi TEllJIOl-lEPEHOC OT KAI-IJIM, I-IEPEMEIEAIGIEE$&X B 
3JIEKTPklYECKOM I-IOJIE I-IPM HU3KOM YHCJIE ITEKJIE 

~~~e~~aconpnrteHHbdiTeIlnonepeHocnpHHerrraUHoHaptroliTeMnepaTypeHarpaelnle 

pa3nena, nposicxon~u@ hfexcxynaiwoulel Kauneft a 06~~0~ -0~111 B yc~10~~~1xnekr~Ha noc- 

TOBHHOI-0 weKTpE¶ecKoro no~~.Te~~~epaqpacr~~~o~~~Ho~ @%I onpe~w~e~cr c Hcnonb3oBaHxeMc~~- 

rynqwioro Bo3meHsfK, B To spew KaK perueHne nnK 06na~ni BWH KBIUIH nonpeH0 M~TOL~OM 

B3BCURWIibU PiuHOCTC~ C ECIIOJIb30BaEiiCM plX)‘Jl~HO~O BO3MJ’lUCHHn. SOT MCTOA JIBJUICTCJI &kTBCH- 

HbIM npEpeluerua!3BsaucHecraqeotrap~aeorulopo~~a~~, B~~XID~~UOWME aonpezwtmoure~ 

ypamiem E/HJm B rpaHH¶HbJx yC~~o~~~Kx.Teb~epaTypa pawnrr- II ~n.non~o uepeoro nopamra 

wcna lleure;O~arO CWJlbXl yCTrUrOBJIeHliK BJIHPHHII BHeuniero nons HacropocTHcyMMapHoro nepe- 

HOCa B OCHOBHOii @e Ol&WWMlOTcXTeMlle~TyPbl H 6OJMX BbICOKOrO llOpK.UKa. B pellIeHHH IIf?pBOrO 

nop%mra 3@eKw 3nerrpmreoxoro norm Bbr3braanrr x3Meriemie TeMneparypar A rennorroro noroxa 
BHyTpH KaRlIA H BHC CC, a CKO&WCTb C)‘MMapHOrO TCIIJIOFI~HOM, OlI~L@JlEM~ HCUUO’UiTCJIbHO TCII- 

JlO~~BO~OCTblO H KOHBCKtUi&, OOT- b IlOCTOXHHOfi. % UjMLWlaMH npn6wrreHAa nepeoro 

nop~acr~0~~rcn~o3~oarrllo~oueHKa~rn~3neinp~~ecKoronona~c~~ap~~~ennonepeHoc. 


