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Abstract—The conjugate heat exchange with transient interfacial temperature between a translating liquid
drop and its host fluid in a uniform electric field is considered. Singular perturbation is developed to obtain
the temperature within the domain of the continuous phase whereas regular perturbation is used to obtain
the solution inside the drop with the help of the method of weighted residuals. This method proves to be
powerful for the solution of problems with time-dependent non-homogeneities arising within the governing
equation and/or the boundary conditions. The temperature is computed up to and including the first order
in the Peclet number ; however, higher order is also performed for the host phase in order to examine the
influence of an external field upon the total transport rates. In the first order solution, the effects of an
electric field were to alter the temperature inside and outside the droplet as well as the heat flux, but the
net heat transfer rate, which is totally controlled by conduction and convection, remains unchanged.
Beyond the first order approximation, the contribution to the net heat transfer due to the electric field
becomes assessable.

1. INTRODUCTION

THE APPLICATION of an electric field to transport pro-
cesses offers several advantages. Among them are the
surface area generation by means of droplet rupture
[1], and the increase of the transport rates through the
electric field-induced motion both inside and outside
the drop or the electrically forced oscillation of the
drop itself [2, 3]. Although the augmentation of heat
transfer in liquids has been observed in the experiment
of Kronig and Ahsmann [4] nearly 40 years ago,
very little is understood about its enhancement mech-
anisms.

Not until recently has the problem received a con-
siderable renewed interest motivated by a desire to
develop compact direct-contact liquid heat ex-
changers for space applications, and to resolve some
technical difficulties related to traditional mechanical
agitations as commonly found in numerous chemical
engineering processes. As a result, a number of studies
have been conducted in the past few years in an effort
to understand the phenomena. For a complete update
of the activities in this area, the readers are referred
to an authorative review by Jones [5]. Due to the
diverse nature of the problem, we will restrict our-
selves to the type of motion known as the Taylor flow
in that the electrical stress is the sole electrohydro-
dynamic coupling. To date none of the theoretical
investigations has produced a satisfactory picture of
the transfer behavior in the presence of an external
electric field. Within the scope of this context,
Morrison [6], Griffiths and Morrison [7, 8] and Sharpe
and Morrison [9] treated the situation as an external
problem with controlling resistance being in the con-
tinuous phase. This is equivalent to the case where

there exists a fictitious mixing mechanism to destroy
the temperature gradient within the drop interior. On
the opposite extreme, Chung and Oliver [10] studied
the transport aspects of the internal problem in which
the host phase is completely isolated from the dis-
persed phase. According to Abramzon and Borde[11],
the criteria for those limitations may be determined
from the contribution of each phase to the total heat
transfer resistance which may roughly be calculated
from the characteristic cooling/heating time for each
phase, the ratio of which gives an estimate of the
relative magnitude of phase resistances:

[ &>

=~ 0.0330, Nu, M
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where @, is the thermal conductivity ratio of the con-
tinuous to dispersed phase, and Nu, is the steady state
Nusselt number. For liquids of similar properties, this
ratio is of the order of unity; therefore neither one
of the two approaches discussed above is adequate.
Under this situation we encounter the so-called ‘con-
jugated’ problem in that the governing equations of
heat transfer for both the continuous and dispersed
phases have to be solved simultaneously. Chang et al.
[12] and Chang and Berg [13] attempted to solve this
problem in an approximate manner by using the thin
boundary layer approximations to neglect the molec-
ular diffusion in the 0 direction. Such simplification is
justified only during a short period of exposure, and
is invalid as time increases due to the growth of the
boundary layer with time.

In this paper we concentrate our efforts to pose
the problem of heat transfer associated with a drop
translating in an electric field in a more realistic term,
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NOMENCLATURE

A constant coefficients in the velocity W dimensionless field strength
equation (4) Z dimensionless temperature.

A see equation (41)

B, constant in equation (13) Greek syrglbols 1 diffusivit

C, constants, see equations (29) & ; erzla ! d}xsgx y

E electric field strength Bi ;eel p&en I;i . tant

f;  unknown function defined by equation 7 wler-Viascheroni constan

’ (19) & perturbation parameter
g sce cquation (8a) 0 angular coordinate
Gk sce equation (8b) K thermal conductivity
k -

K., .. spherical Bessel function H gos Qt

Nu  steady state Nusselt number P ;nm Y. less ti

P Legendre polynomial i 1MENSIONICss Lme .

Pe Peclet number P, ratio of property x of the continuous to

] heat transfer rate , dispersed pl'lase

0"  heat flux w! see Appendix A.

R drop radius Subscripts

R; see equation (27) s surface condition

r dimensionless radial coordinate $8 steady state condition.

ﬁ see definition (44) S ot

RHS right-hand side, equation (20) UpCrScripts .

% residual in inner solution

T dimensional temperature out  outer solution.

t, characteristic time Overheads

U velocity vector dispersed phase.

then develop a singular perturbation procedure for
the conjugate problem. In addition to the conjugative
aspects of the problem, it differs from the work of
Griffiths and Morrison [7] in that the present for-
mulation also includes the translational velocity of the
drop for which the regular perturbation expansion
fails to yield a uniform solution. Furthermore it also
takes into account the peripheral variations of the
interfacial temperature.

2. FORMULATION

Consider a pure liquid drop at temperature T,
translating with a terminal velocity U, in another
immiscible liquid of infinite extent, held at tem-
perature T, under the influence of a uniform electric
field whose strength £ is assumed not very strong in
order to prevent a charge leakage from the two-phase
system. Due to the temperature difference, heat will
flow from/to the drop depending on the direction of
temperature gradient as dictated by the second law of
thermodynamics. This heat transfer process can be
described by the energy equation written in dimen-
sionless form as

PeU-VZ =V2Z )
/A .
5 +P0-VZ=V'Z 3)

where Pe(= U, R/a} is the Peclet number for the

continuous phase with « being the thermal diffusivity,
Pe (= U, R/4) the Peclet number for the drop phase,
(= to/R?) the dimensionless time, U = (U,, Uy) is
the velocity vector, and Z is the local dimensionless
temperature defined by (7—T,)/(Ty—T,). In the
above equations, the transport within the dispersed
phase, distinguished from the continuous phase by a
‘hat’, is treated as transient because the steady state
cannot be attained unless the drop is in thermal equi-
librium with its surroundings. The electrohydro-
dynamic problem in the creeping regime has been
solved by superposing Taylor and Hadamard-
Rybczynski flows [12], and the results are quoted for
completeness :

24, 24
UAr,0) = (734 + —r—z + 1)0059

1
+A3<;3 - %)(3 cos?0—1) (4a)

A
Uglr,8) = <—§'~ e ﬁ - I)Sin8—~ gv‘éisinécosé
r ¥ r
(4b)
U,(r,0) = A,2—2r*) cos 0— A;(r—r*)(3cos? 6—1)
(40)

Uo(r,6) = A,(8r>—2)sinf— A,(5¢* —3r) sin G cos 6
(4d)
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where the constant coefficient 4 values are defined by
the following expressions: 4, = 1/4(1+®,), 4,=
—-(3+420,)/4(1+®,), 4,= W/4(1+@,), and 4, =
—@,/4(1+®,). Also, r is the dimensionless radial
coordinate, # is the angular coordinate, W=
4V, (1+®,)/U, is the measure of the relative
importance of the electric field to drop translation and
may be interpreted as the dimensionless field strength.
V., introduced in the definition of W is the maximum
velocity generated by the electric field in the absence
of the translational motion, and has a complicated
functional dependency upon the electrical properties
[12].

In order to make the problem well-posed, we specify
the following boundary conditions that include the
appropriate limit far away from the drop surface,
the continuity of temperature and heat flux at the
interface, i.e.

8Z . _ 872 . _
®, 5 (LA = & (LA) (5a)
Z(1, 1) = Z(1,f) = Z,(1, ) (5b)

where Z, is the interfacial temperature with angular
dependence. Here it is modeled by two terms: the first
term is for spherically symmetric conduction whereas
the second is added to account for the effects of con-
vective motions due to both the translation and the
electric field

Z(j1)) = Zoo+e[Zo1 Po( )+ Z P (1} + Z,, P2 (j1)]
)

in which i represents cos#, ¢ is the Peclet number
for the continuous phase and is used as a perturbed
parameter, and P, is the Legendre polynomial of order
i. Other constraints that assure the symmetry of the
problem about the x-axis will be imposed in the next
section.

3. METHOD OF SOLUTION

Due to the presence of the translational motion of
the drop, regular perturbation [7] is of limited use
because the solution does not approach the common
limit far away from the surface. Physically this means
that there exists a region where the conduction is no
longer dominant as illustrated from the ratio of the
convection to conduction flux

u-vz

Pe~grz

= O(r Pe) 0

which clearly shows that conduction is the major
mode of heat transfer near the drop surface whereas
convection dominates far from the drop regardless
of how small Pe may be.

To overcome the deficiency of the traditional per-
turbation series, it is necessary to employ a singular
perturbation method in that the inner and outer solu-
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tions are expanded in the following forms:
Z"r ) = ;gk(e)z::' nD G
Z%(p, ) = f: GOZP o) (8b)

where p is regarded as the rescaling coordinate
(p =¢r, e = Pe), and the functions g,(¢) and G, (g)
are subjected to the restrictions

. G
lim—~* = 0. )
£~ O [ e—0 Gk

To complete the solution we must match the inner
solution at its ‘farthest extremity’ with the outer solu-
tion at its ‘nearest extremity’ asymptotically.

3.1. Leading order solution

We now proceed to construct the solutions by sub-
stituting equation (7) into equation (2) with the
assumption that go(e) = 1. The leading order equa-
tions are obtained, by equating the coefficients of &°

as
1d/f ,dZ7
rdr (r dr ) =0

and the integration of equation (10) leads to a solution

that satisfies the appropriate boundary condition at
the interface as

(10)

Z3(n) =ZQO+C,(1-——~1—> an
where C, is the constant of integration to be deter-
mined shortly.

For the outer region, the repetition of the above
steps gives the leading order governing equation in
terms of the restrained coordinate by

1{o 2azgut> ? [ , azgm}}
0 T + = (1= -
p{ap (p g ) ta[H ) o

_0Zy  (1-gh) ZY
= + 2 12
P p P (12)

In a different context, Acrivos and Taylor [14]
obtained an analytical solution to equations (12) in
the form of a series of product of spherical Bessel and
Legendre functions

Z3¥(p, fi) = e % \/ (g) Z B.K, . 12(p/2)P, (1)
(13)

where B, are constants, and the spherical Bessel func-
tion is defined as

i+n)!

Kt = () 000

(14
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The constants in equations (11) and (13) are now
calculated from the matching principle that demands
the two solutions to approach the common limit in the
overlapping region. Mathematically, this requirement
may be stated as

lim Z3(r, ) = m Go(e)Z5"(p, ). (15)
For expression (15) to be met, the complete leading
order solutions with G,(g) = ¢ reduce to

Zoo

() =—= (16)

an

Z
Z3(p, ) = = FevHIA,

3.2. Higher order approximations

For higher order solutions, the algebra in the
matching process becomes tedious, without even men-
tioning the complexities introduced by the governing
equations. However, the next higher order solutions
may be obtained with a reasonable amount of effort.
Due to the lengthy algebraic involvement and the
straightforwardness of the procedure, we only briefly
outline the steps.

The nth order equation can be written in the

following form:
Zm:l}

1 {8 ,oz" ,
”{'5( ar> """" [“‘ )

YA (l —ahiazn
ar Us ¥ 5;{

=1U,

(18)

Upon inspection of equations (4a, b), (6), and (18), it
would appear that a portion of equation (18) may be
simplified"if the solutions are sought in the form of
a linear combination of the products of unknown
functions of r and the first 2# Legendre polynomials,
ie.
. 2n

Z3n ) = X PR (19)
J=
where the subscripts j and » indicate the series index
and order of approximation respectively.

The advantage of expressing the solutions as equa-
tion (19) comes to light from the fact that it allows one
to solve equation (18) termwise. More importantly, it
transforms the partial differential equation into ordin-
ary differential equations which are certainly much
easier to deal with since their solution techniques are
well developed. For n =1, the right-hand side of
equation (18) can be evaluated from the leading order
solution (16) and the velocity of the continuous phase
(4a, b), then using the fact that a polynomial of power
i can be fitted exactly by the first i+ 1 Legendre func-
tions, one can equate terms containing like order
Legendre polynomials so that RHS? may be written
as

H. D. NGUYEN and J. N. CHUNG

1 1
+2A3200<r‘5 - “r’z)Pz(ﬁ)- (20)

Combining equations (18)—(20) yields the Euler equa-
tions whose solutions are readily solved using the
method of undetermined coefficients

Joi(r) ”ﬁ*%(1“%>

Ay 1
-z 3 (- 5)
1 1 1{1
+A2<r—2 - r>+*2”(;5 —-1)] (21b)

1 5 3
~5+5] @l

7 2
Jaulr) = 2! +-A4 Zoo(
with the help of the matching condition

(21a)

fuln) =

6

lim (Z5(r,7) +6Z7(, D] = lim [Go(©Z5 (5. D).
@)

We now turn our attention to the next term of the
outer solution described by

1{o( 0z af oz
(5 o5

_ 8Z (1—-a*y oz
o P OQ
4 ewp/Z(l—ﬁ) _
- §A2200{T[“2P0(H)

23

(3+ 6)P {7] +P»(;t)]}

which may then be rearranged to be

Lfof .0z%), a2l _z*
PAAGR AR A |y

e—ri?

+4—p2

[ 2Po(ﬂ)+(3+ 6)P (u)+Pz(u)] 24

via the substitution of the new dependent variable
defined as

Z9r 1) = —(342Ze) VP2 (r ). (25)

Since the equation is now non-homogeneous, its solu-
tion consists of two parts : the homogeneous solution
and the particular solution. The homogeneous solu-
tion can be obtained by the separation of variables
technique whereas the particular solution is a linear
combination of the first three Legendre functions. The
total solution is
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Z3(p, 1)
4eli%r Ty & .
= "‘AzZooT[\/(E> Y. C.K,.12(p/2D)P.(R)
n=0

+ 2 Rj(p)P,-(ﬁ)] (26)

i=0

where the functions R;(p), j =0, 1, 2 are

eI/Zp o e—x e~ 1/2p
Ro(p) = 2pj p dx+ 2 Inp (27a)
P
el 2\ [®e™™
Rioy =", ("Z)J &
36_”2” 1 1 1
e !] am
el 6
R =7, ( ot )J

—1/2p
(.

The constants C, can be evaluated from the matching
requirement as usual :

lim [Z8(r, ) +6Z(r, )]

= 31_{1}) [eZ3"(p, )+ Z(p, D] (28)
so that
-3 {(Z, 1 ¥y
Co =24, (zoo + 2>+ 7 (292)
3=y

C, = o (29b)

-3
c,= =3 (29¢)

4

where y is the Euler—Mascheroni constant with a value
of 0.577215.

Since the values of the Legendre functions are
identically zero except for the zero order when they
are integrated over the drop surface, the electric field
becomes obscure unless the analysis, at least the inner
solution, is carried out one order further. To do that,
we need to solve equation (18) by letting n = 2, and
rearrange the RHS in terms of Legendre polynomials
by using their orthogonality properties. With the
algebra omitted, the results of the RHS and the solu-
tions are given below:

0 6 1

: S _ W,
RHS? = Po(@) 3, -7 +Pi() X, 5

8 w? w?
+P,(@) Z e +P3() Zor"+3
+ P, (F) Z s (30)

n=o0l
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1\ o 1 w5
Forlr) = E0<1— ;>+ —29<r— ;)—Hnr(a)?— 72)
W1 1), @21 1), 08(1 1
+7 r_z_r+6 PR 2\t
G(1_ 1), @1 1) ef(1 1
t2u\F Tt \E Tty
1\ o 1\ o1 1
r—= - \l-=]-5\--=
r 2 r 2\r r
wflnr\ olf1 1\ wifl 1
‘T(7>+7<73‘72‘ T\F T2
w1 1) wif1 1
(1) oo
1\ o? 1\ o? 1
el A5
1 1
G\ TE
wi(lor) L) eer 1
o )t 1a
oL Lol 1
24 \ r® 36\r7 r
1 w1
faz(r)=E3<r3—,—4> Tg(;
w1 1
10\r2"

Si2(r) = E,

ws 1 1
22( F) Ble)

where the w? values are known functions of the trans-
port and electrical properties listed in Appendix A,
and E, are constants of integration remaining to be
determined. As pointed out by Acrivos and Taylor
[14], the second order inner solution contains a term
that cannot be matched with the outer solution.
Consequently, the inner solution should have a term
e2IneZ'™" where Z2" is the solution of equation (10)
with the interfacial constraint Z,, replaced by zero.
That is
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. 1
L3 () = w?<1 - }>' (32)

With the matching condition
lim [Z0+eZP 4+ €% IneZ" +622Z7]
= lim [eZ3"+e*Z5™] (33)
po

the constant E, values can be evaluated to be

4 3 9\ 1(Z
Ey= —§A2200<§— §)~i(-299 +zo.) (34a)
E =- %Zoo (34b)
E,=Ey=E,=0. (34c)

Further examination of equation (33) reveals that
the next term of the outer expansion would be
e’ In ¢Z%" where Z3™ can be shown to satisfy the
equation identical to (12) and the matching require-
ment valued at (—w?/p) as p — 0. It thus follows that

Z3(p. ) = — zAz(Zﬁ)e"f'Z““". (39)
3 P

As a consequence of the presence of equation (35)
in the outer expansion, the next term of the inner
solution must be —2/3(4,e*IneZ™). From the argu-
ments above, it is therefore concluded that the first
few terms of the inner series expansion are expressed
as

. . 2 .
Z%r, ) = Zg(r,i) + (8— §A283 In 8>Z'f‘(r, i)

+£21n£<1—1)w°+822"’(r )+--- (36)
Cr r i 2 ’H

and the accuracy of the resulting expression may be
demonstrated to be O(¢?), O[e*(In¢)?], and O(e*lne)
respectively.

3.3. Droplet heating/cooling

Unlike the exterior problem, the classical per-

turbation yields uniform solution throughout the

drop domain. It is therefore suitable to expand the

drop temperature in a perturbation series as
2o,y = ), 2,0

n=0

(37

so that the lowest order of approximation to the
governing equation can be obtained by neglecting the
convective terms in equation (3). In view of the bound-
ary condition associated with it, we conclude that this
order is not dependent upon the polar coordinate.

That is
0Z, 10/ ,0Z,
ot —riar\ or

which is the pure conduction for a spherical body. It
is subjected to the initial temperature along with the

(3%)

continuity of temperature, and of heat flux at the
interface as described by equations (5). In addition to
those requirements, we impose the condition of zero
heat flux at the drop center.

It is possible to solve equation (38) by the sep-
aration of variables technique together with the help
of Duhamel’s theorem to account for the time-depen-
dent boundary condition. However, such an approach
would lead to an integral equation of Voltera type
characterizing the time evolution of surface tem-
perature. An alternative approximation is the Method
of Weighted Residuals (MWR) that may yield an
approximation which often contains the main features
of the result with only a few terms. In this method, the
dependent quantity is expanded in a series of known
functions 4, (r) as

/Vll - -
Zo(t,r) = Zoo(1) + 3, Ac(@A(r) (39)
k=0
where A4, are unknown coefficients to be determined
in a manner that the differential equation is satisfied
in some best sense. Next we substitute the expansion
(39) into the residual, #, defined as

(40)

It is clear that the further Z, departs from the exact
solution, the larger is the residual #. To control the
growth of the residual, we choose the Galerkin
method, which makes the residual orthogonal to the
weighting function, thus making the residual
approach zero as N, — co. This key feature relies upon
a theorem which states that if a function is orthogonal
to each member of a complete set of functions then
that function can only be zero. By utilizing this
theorem, the following algebraic/differential system
can be derived for the determination of 4, :

dZye gdfio 4 d4, 4 dA,
dr 5dr T35 dr T 105 dr
. .2
= 64, +24,+ 4, (la)
dZo, i“ui?f& 20 dd,
dt "7 dr T21dr 331 dr
. 18, 10,
=—6A0——7~A.—7Az (41b)
dZoq+itd_/io+§d/i, 140 dA,
dz 9 dz 99 dt 1287 dr
. 322 . 370 .
——6A0—6—A|—‘9—9* 2 (41C)
2 . L
Zoo =g (Aot+Ai+4) (41d)

where we have approximated the solution by a poly-
nomial, rearranged in the form (1 —r?)r? so that some
of the boundary conditions are satisfied automatically
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for the trial functions #,(r) because of their simplicity.
The fourth equation, obtained directly from the inter-
facial energy balance, relates the leading order surface
temperature to the coefficients 4,.

The initial conditions may be obtained by weighting
the initial residual with the trial functions in con-
junction with the requirement regarding the con-
tinuity of heat flux at the interface. Thus

) 690,
Ao(0) = 32Q27+20,)’

. —330,
40 = g0y

i 4290,
A, (0) = 3————--2(27+2®K). (4le-g)

By eliminating the variables, one can convert the
system (41) to a single third order homogeneous ODE
with constant coefficients, for which a standard treat-
ment is readily available. That is, the solution is a
linear combination of three exponential terms

Ay = Broo€ "+ Br00€ ™ + By 08" (422)
A= Baoo€ 4 BsgoeT T + Pe oo™ 42b)
A1) = Brooe “"+ Byope N 4By oo €T H" (42c)

where g, are the roots of the associated characteristic
equation
(4P, + 54)x3 + (5580, + 3267)x?

+ (188100, +45045)x+135135 =0, (42d)

and the integrating constants are evaluated from
expressions (41e-g) along with the remaining initial
conditions derived from equations (41). These are

dit'd, —3003 d'Az
FT |, 302412240, {(@H N®)
dA d‘4
+Q0+70) L 430, —"} (42e)
dt =10
d"“ﬁ, 2 di+1Af‘2 diAf‘z
| 13 4o+ t=o+42~dfi o
(426)
di+|A"0 __?é_dHljz
ar'tt |, 143 dotT |
d'd, did,
+22 | +20"&T" . 42g)

where the superscripts represent the order of differ-
entiation. The above six equations, three for each
value of i (i = 0, 1) plus those stated earlier, consti-
tute a system of nine equations in nine unknown B
values.

At higher orders, the equation reduces to the stan-
dard form of axisymmetric heat conduction problem

’R/CEh:

TN
RCC,, =
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in spherical coordinates with the convective term,
known from the preceding approximation, considered
as a heat source. In general the equation for any order

may recursively be given by
9z,
o

az‘"_l 0 2% .a_ 1
ERRtAN +612 (-a

1[~02,., ~U-a)"7adZ,
—5;[0, = —Us o | 43)

r

Due to the non-angular dependency of the lowest
order solution, the first order approximation, n = 1, is
governed by equation (43) with the angular convective
term identically equal to zero. Perhaps the best
approach of solution would be to express the radial
convective contribution, denoted by@‘, in terms
of Legendre functions as follows

@,. =0

(44a)

@,(1-r%)

(D (l+(I)“) {["Bl 00

—-(r— zra)ﬁa,oo

—(@2r*=3r)B 00l €7
+{rB200— (r—2r)Bs.00— (2r* —3r°)Bg ool e ™

+1rBs.00— (r—=2r*)Bs.00— (2>~ 3r*) By o] € "}
(44b)

W(l—r?)
¢,(1+0,)

—Q@r —3r%)B7 00"
+[rBa00— (r*=2r*)Bs 00— (2r* = 3r)Bg pol € ™"

+[r*B.00— (= 2r*)B.00~ (2r* —3r*)Bs 0l €77}
(44c)

{["231.00 —~(r =2r)YB4.00

In order to meet the consistency of the interfacial
temperature, and to satisfy the finite value require-
ment at the origin, the solution is sought in the form

Z 1 (r s ﬁ)

2
= ¥ Ja0)P(® 4s)

so that equation (43) can be solved termwise. The
advantage of being termwise is the relative ease with
regard to the solution due to the reduction of the
number of variables by one. The analysis of the result-
ing equations is very much the same as that of the
leading order even with the non-homogeneity intro-
duced by the heat source term.

Since the steps leading to the solution were dis-
cussed earlier, we need not repeat them here. Instead,
we present the solution and refer the reader elsewhere
[15] for details

NOI

fo@n) =Zp@+1-r) ¥ r*Bi(n) (460)
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N

fa@r) =rzZ,(0+1~=r) ¥ r**'Ci(x) (46b)

fm(‘fa N =rZx+1-r) Z’ r2k+2ﬁk(f) (46¢)
K=o

in which we have used trial functions that are nearly
the same as the terms of their corresponding RCC,,
values. The presence of the extra terms is to satisfy
part of the problem. Since the function f,, values are
generally weak [15], we retain only the first two terms
of the series so that the first order interfacial tem-
perature becomes

Zy (1) = [Bo(f)+B @)-5 Zoo(f) (46d)
1 .
Zy (1) = l+2(D [ZCO(T)
+2C O+ - (31-:_‘:1? )Zoo(r):l (46¢)

1 .
Zy(t) = W{ZDO(T)

. o, w
+2D,(1)+ 55(1+(D )Zoo(r)J (46f)

where the constants B, C,, and D, are given in Appen-
dix B.

From a study of Nguyen and Chung [16], the tem-
perature inside a vaporizing drop translating in an
electric field is almost spherically symmetric, and the
first order interfacial temperature is, in any cir-
cumstances, more than one order-of-magnitude
smaller than the leading order. This indicates that
higher order analysis is practically unnecessary.

4. RESULTS AND DISCUSSION

In this section we intend to carry out a parametric
study, rather than being referenced to a particular type
of material, of the solutions obtained in the previous
section in order to demonstrate the electric field/two-
phase flow interactions and the consequence of their
influences upon the heat transfer process. Efforts will
also be made to demonstrate the usefulness of the
present treatment over a more direct method that
usually involves the solution of the so-called Volterra
integral equation. Based on the authors’ knowledge,
this work is the first that employs a method of
weighted residuals to a boundary value problem
involving time-dependent boundary conditions
and/or non-homogeneities arising within the govern-
ing equation itself.

Perhaps the most important parameters in a con-
jugate system, such as a two-phase system, are the
interfacial variables which refer to the surface tem-
perature in this case. This is true because once it is
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F1G. 1. Time evolution of surface temperature for W = 5 (a),
20 (b) and ~20 (c).

known, their couplings are climinated, and one is
allowed to model the transfer processes for each
region separately. In the study of Nguyen [15] and a
related one Nguyen and Chung [16], the most domi-
nant surface temperature is that associated with the
zero order solution. It is, therefore, necessary to retain
as many terms as possible in order to assure that the
solution, though somewhat approximate, preserves
the main features of the important mechanisms occur-
ring during the course of exposure. Figures 1(a)—(c)
show the transient response of various components of
temperature for a system composed of two immiscible
fluids having similar physical properties at three
different values of W (5, 20, and —20). For a positive
W, the electrically generated flow, directed from the
pole to the equator, causes a convective effect where
more than 77% of the surface area senses an increase
in temperature. Although the influence of the electric
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2.0

Fi1G. 2. The electric field effect on the surface temperature.

field has very little, if any, impact on the history of

¥ U, e mrmcEmre te mlas

the surface temperature, its presence is clearly shown
to delay the establishment of a local thermal equi-
librium at the interface. As will be discussed shortly,
the influence of the electric field corresponding to this
order does not yield any net effect, but it restructures
the temperature distribution on the drop surface, and
hence the heat source distributed inside the drop
domain for the next higher order approximation. For
a negative W, the electric field-driven flow reverses its
direction causing effects that are totally opposite to
the former situation, but its overall result stays
unchanged. One should not be misled that the direc-
tion of the internal circulation is a controlling par-
ameter ; it is instead dictated by the electrical prop-
erties of the participating medium. One distinctive
characteristic of the leading and first order solutions
is the fast response with time for the former, especially
at short time, whereas the latter tends to establish
its maximum influence, but can never overcome the
domination of the conduction.

Unlike the case of thermal transport at high Peclet
numbers where the electric field has a decisive role
even with a relatively low value of W, no pronounced
consequences are observed in this study for a
dimensionless field strength as high as 5. This may be
explained by the fact that conduction is the superior
mode of heat transport at low Peclet numbers. How-
ever, as the field is increased in potential, the con-
tribution from the electrically induced convection
becomes more competitive over its counterpart, and
it eventually outplays that due to translation provided
that the applied voltage is sufficient. This behavior is
clearly demonstrated in Fig. 1(b), where the influence
of the field becomes noticeable. In carrying out the
computations, we have used three and two terms for
the zero and first order approximations respectively.
Since the MWR method is very similar to the method
of separation of variables, they both suffer the same
difficulties in getting the solution to converge at small
time. Based on this information and the monotonic
nature of the solution, the maximum error occurs
at T =0, which is about 7% lower than the exact
prescribed initial value.

In Fig. 2 we illustrate the effects of an electric field
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FiG. 3. Time variation of the temperature at the center of
the droplet.

on the interfacial temperature, Z,,, at various field
strengths. They all show a general trend with the early
stage associated with a rapid increase in temperature
until the electric field effect is fully established when
it reaches a critical value, then falls off, at a slower
pace however, as time increases. The time it takes to
achieve a maximum/minimum value is roughly the
same for all cases given in the figure, and their
maximum values exhibit a linear relationship with W.
It is noted that the initial condition was not satisfied
exactly by the MWR method, but the error is negli-
gible, as shown in Fig. 2.

The fully established thermal equilibrium can be
characterized by the temperature of the drop center
because a homogeneous material can be considered
to be in thermal equilibrium when all the temperature
gradients have vanished. In Fig. 3 we plot the tem-
perature at the drop center against time for different
values of Peclet numbers. In general, the temperature
at the location falls off in an exponential decay
manner. Although it behaves as if it is shielded from
the field, one should be reminded that it does have
some effects if a higher order approximation is
included in the analysis. It is important to note that
the length of the transient period is a weak function
of the Peclet number, and this fact may be used to
substantiate our assumption that there is no region
within the drop where convection and conduction are
of the same order. On this basis, the application of
regular perturbation is justified.

As discussed earlier, once the interfacial tem-
perature is known the transport processes within their
own phases may be modeled individually. With the
help of the inner solution of the continuous phase, the
local heat flux along the periphery of the drop can
be calculated by evaluating the normal derivative at
r = 1. This operation resuits in

2 Z
Q(z, f) = {Zoo—i— <8-— §A2£3 lne:>(~—292 +ZOI>

1 3420
+ 882 1ne< 1+d):>200—82|:E0+u)8
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where the heat flux has been non-dimensionalized by
x{To— T, )/R. Also of interest is the total heat trans-
fer, O, which can be obtained by integrating the heat
flux over the entire drop surface. Such integration
results in no net contributions from terms with Legen-
dre polynomials of orders other than zero. That is

2 AN
o) = Z{Zoo-}-(a— §Azs3lna)<T +ZO.)

1, 3420,
+*6“8 lns< 1_{:@)200

3+40, p
8(1+®,) "

S

2 g 4] > (D}(‘)
—&t Byt o +of— Zk—-_l . (48)
k=2

From the properties of Legendre functions, it appears
that only w{, k = 4-8, depends, among other transport
properties, on the electric field. This indicates that
only the zero and first order terms carry the con-
tribution due to the electric field. Therefore, one may
interpret the first term as the contribution due to
conduction, the second and third to be the convective
enhancement due to translational motion of the drop,
and the fourth term to represent the combined con-
vection of the former and the electro-convection
modes. It should be noted that the functional form of
equation (48) is different from the analysis of Griffiths
and Morrison [7] where they derived the Nusselt num-
ber to be a series with terms of even power in Peclet
number for a stationary drop subjected to an electric
field. Such information, if known in advance, would
be very helpful in correlating experimental data. It is
also worthwhile to point out that the present result
reduces to the expression given by Acrivos and Taylor
[14] when Z,, = 1 and Z,, = 0 for a slowly translating
solid sphere in an electric field-free environment

241 1
Ootia = 2+&+¢ (y+zg~6+lne+ elns) 49)

To assess the advantage of the use of an electric field
to enhance heat transfer, it is desirable to examine the
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Fi1G. 4. The effect of an electric field on the heat transfer rate.

ratio of the total transport rate to that without an
electric field. Here we give the results at two different
Peclet numbers in Fig. 4. It is seen that the curves do
not collapse into one at small time as boundary layer
theory had predicted. This result indicates that con-
vection, especially electro-convection, has a major
role at the later stage of the process. It also reveals
that the net effect due to the electric field depends
strongly on the translation, the magnitude of which
can be deduced from equation (48) to be e*W.

5. CONCLUDING REMARKS

The results illustrated thus far would fill the lower
end of the Peclet number spectrum that has not been
explored in the past. A number of interesting classical
results can be deduced from this study by setting the
parameters to their appropriate values. Although the
electric field does stimulate the transport process to
some extent, its usage is only effective at high values
of W. None the less, one should be aware of the nature
of electrohydrodynamic couplings as it may carry a
direct application in combustion where a change in
temperature distribution inside a heterogeneous drop-
let would enhance the likelihood of a secondary atom-
ization. There is no doubt that such technology, if
well developed, may lead to clean and more efficient
combustion of fuel drops. The solution technique
proves to be useful for the study of boundary value
problems with a time varying interfacial condition
that is one of the main attractions of our study. This
feature is shown to be important for transient ana-
lysis, and should therefore be incorporated into the
model.
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APPENDIX A

The following are the expressions for w! associated with
zquation (31) in the text:
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TRANSFERT THERMIQUE CONJUGUE POUR UNE GOUTTE EN TRANSLATION A
FAIBLE NOMBRE DE PECLET DANS UN CHAMP ELECTRIQUE

Résumé—On considére ’échange thermique conjugué avec température variable a I'interface entre une
goutte liquide et le fluide ambiant dans un champ électrique uniforme. On développe une perturbation
singuliére pour obtenir la température dans le domaine de phase continue tandis que la perturbation
réguliére est utilisée pour obtenir la solution dans la goutte avec le secours de la méthode des résidus
pondérés. Cette méthode est trouvée puissante pour résoudre les problémes avec des hétérogénéités dépend-
ant du temps 4 cause de I’équation et ou des conditions aux limites. La température est calculée au premier
ordre du nombre de Peclet; néanmoins un ordre plus élevé est aussi atteint pour la phase ambiante de
fagon 4 examiner I'influence d’un champ externe sur les flux totaux transférés. Dans la solution de premier
ordre, les effets d’un champ électrique altérent la température a I'intérieur et & I’extérieur de la gouttelette
ainsi que le flux thermique, mais le flux net transféré qui est totalement gouverné par la conduction et la
convection demeure inchangé. Au deld de 'approximation du premier ordre, la contribution du transfert
net de chaleur a cause du champ électrique devient calculable.
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KONJUGIERTER WARMEUBERGANG AN EINEM BEI KLEINER PECLET-ZAHL IN
EINEM ELEKTRISCHEN FELD BEWEGTEN TROPFEN

Zusammenfassung—FEs wird der konjugierte Wirmeaustausch durch die Grenzfliche zwischen einem
bewegten Fliissigkeitstropfen und dem umgebenden Fluid in einem gleichférmigen elektrisichen Feld
betrachtet, wobei die Grenzflichentemperatur zeitlich verdnderlich ist. Die Temperatur im Gebiet der
kontinuierlichen Phase (in der Umgebung des Tropfens) wird mit Hilfe eines singuldren Stérungsansatzes
ermittelt, wihrend ein regulires Storungsverfahren unter Anwendung der Methode der gewichteten
Residuen fiir die Losung des Temperaturfeldes im Tropfen benutzt wird. Dieses Verfahren erweist sich als
wirksames Instrument bei der Losung von Problemen mit zeitabhdngigen Nicht-Homogenititen, die sich
aus der zu Grunde liegenden Gleichung und/oder den Randbedingungen ergeben. Die Temperatur wird
bis einschlieBlich der Peclet-Zahl erster Ordnung berechnet. Dariiberhinaus werden auch héhere Ordnungen
fiir das umgebende Fluid betrachtet, um den EinfluB eines duBeren Feldes auf den Gesamttransport zu
untersuchen. Bei der Losung erster Ordnung wirkt sich ein elektrisches Feld so aus, daB sich die Temperatur
innerhalb und auBerhalb des Tropfens dndert. Dasselbe gilt fiir die Warmestromdichte, wobei jedoch der
Nettowédrmestrom, der sich aufgrund von Leitung und Konvektion ergibt, unverdndert bleibt. Bei Losungen
hoéherer Ordnung wird der Beitrag zum Nettowdrmetransport aufgrund des elektrischen Feldes
abschitzbar.

COTIPSIXEHHbBI¥ TETUIOIIEPEHOC OT KAILIH, NEPEMEIMAIOMENCS B
SJIEKTPUYECKOM TI1OJIE ITPM HA3KOM YHCJIE NEKJE

Amoraims—HccenyeTcs conpsaXkeHHbIH TEIUIONEPEHOC NPH HECTAIHOHAPHOM TeMMepaType Ha rpaHHLE
pasnena, NPOHCXORALIME Mexy nmajaroiei xamneil A 06beMOM XHAKOCTH B YCIIOBHAX JAeHCTBHA MoC-
TOAHHOTO JJIEKTpHYeCKoro noid. TemnepaTypa CIUIOIHOMR (a3hi ONPENEsISETCA C HCIONL30BAHHEM CHH-
ryJipHOTO BO3MYILIEHHS, B TO BpeMs KaK pelleHHe JIS o0NacTH BHYTPH KalUIH MOJY4eHO METOIOM
B3BELIEHHBIX Pa3HOCTEH ¢ ACIOIb30BAHMEM PErYJISPHOTO BO3MYIUEHHA. ITOT METON KBAACTCA NCHCTBEH-
HLIM NPH PelleHHH 3334 ¢ HECTAIIHOHAPHBIMH HEOXHOPOIHOCTAMH, BO3HAKIOUIMMH B ONPENCIIAIOMEM
YPaBHCHHY H/BJIH B IPRHHYHEIX ycaosusax. TemnepaTypa pacCiMTHIBAETCS BILIOTH IO MEPBOro NOPKOKa
yucna Iexne; onHako ¢ Uebio YCTAHOBACHHS BAHAHMS BHELTHETO NOJIA HA CKOPOCTH CYMMAPHOTO nepe-
HOCa B OCHOBHO# (hase onpenensiorcs TemnepaTypsl H Gosiee BLICOKOro nopsaaxa. B pemexnun nepsoro
nopsigxa pPCKTH EXTPHYECKOro HOJIA BLI3LIBAJIM H3MCHEHWE TEMNEPATYPhl H TEILIOBOrO MOTOKa
BHYTPH KaIUIH H BHe e, 3 CKOPOCTb CYMMAapHOTO TEIUIONEPEHOCA, ONpeaeiieMas HCKOYHTENbHO Tell-
JIONPOBOAHOCTLIO H KOHBekumel, ocTaBajach NOCTOAHHOM. 3a mpemcnaMyu npUGIHKCHHA NEPBOro
MOPAZIXa CTAHOBHTCS BO3MOXHOM OIIEHKa BKJIaJia 3IEKTPHYUECKOrO NOJIA B CYMMapHBIH TETUIONEPEHOC.



